## An approach to infer the gene regulatory network of a stable cell type

Wing Hung Wong

## Cellular state

Let  $X_i$  = expression level of gene , then the cellular state is the vector

$$X = (x_1, x_2, x_3, ..., x_n)$$

How are the levels of expression maintained? What are the gene regulatory mechanisms?

Our task is to formulate these questions mathematically and find a way to solve them

### Dynamical system

Assume varies in time according to  $\frac{dX(t)}{dt} = A(X(t))$ 

The vector fieldcontains detailedinformation on regulatory information, e.g.A $\uparrow$  in

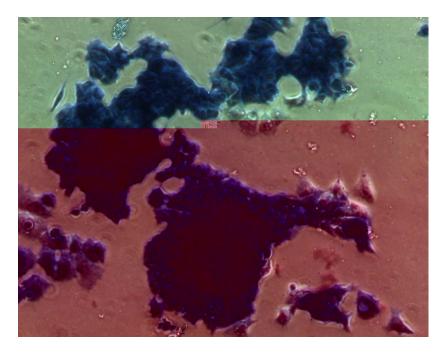
However, is too complex to reconstruct from experiments based on current technology.

### Stable cell type

A stable cell type can maintain a characteristic pattern of gene expression through a gene regulatory network.

Example:

Mouse embryonic stem cells (on 0.1% gelatin, with LIF)



### Equilibrium state

A state  $\mu$  is an <u>equilibrium state</u> if  $A(\mu)=0$ 

The equilibrium is <u>stable</u> if, once the system comes close to  $\mu$ , it will stay close to  $\mu$  from then on.

We identify stable cell types with stable equilibrium states of the dynamical system



### Regulatory network

Suppose  $X(O) = \mu + then for small$ 

$$tA(\mu + t[A(\mu) + T T])$$

where T is the Jacobian matrix:  $T = A (\mu)$ 

We propose to regard T as the regulatory network that maintains the equilibrium  $\mu$ 

Stability imposes a global constraint on the network: *T* must be <u>negative definite</u> to ensure stability

### An approach to network reconstruction

- Use RNA-interference to knockdown each regulator in the stable cell type
- Measure gene expression after the perturbation
- Infer network based on a regression model
- Incorporate sparsity & stability into the regression
- Incorporate regulator binding data when available

## **Regression model**

• Response: gene expression changes on I genes  $Y = \{Y_1, Y_2, ..., Y_L\}$ 

where  $Y_i = X_i(t) - X_i(0)$ 

• Predictor: perturbation on regulators

$$Z = \{Z_1, Z_2, ..., Z_J\}$$

e.g. 
$$Z = ((0.5)\mu_1, 0, 0, ...0)'$$

• Model:  $E(Y_i) = \sum_{j=1}^{J} T_{ij} Z_j$ , for i = 1,...I

• Goal: identify non-zero elements in T

# Sparsity

- The true network is likely to be sparse
- Lasso-type regularization with L<sub>1</sub> penalty
- Penalized loss function

$$L(T, \lambda_{1}) = \sum_{per} \sum_{i=1}^{I} \left\| Y_{i} - \sum_{j=1}^{J} T_{ij} Z_{j} \right\|_{2}^{2} + \lambda_{1} \left\| T \right\|_{1}$$

here the outer sum is over all perturbation experiments

## Stability

- Stability imposes useful constraints on T
- Lyapunov stability

$$||X(t) - \mu||^2 = ||(I + T)(X(0) - \mu)||^2 \le ||X(0) - \mu||^2$$

choose  $\mu$  to get an necessary condition

$$T_{jj} \le 0;$$
  $\|^{(-j)}T_j\|_2^2 \le 1, \text{ for } j = 1, ..., J$ 

• This leads to the optimization of

$$L(T, \lambda_1, \lambda_2) = \sum_{per} \sum_{i=1}^{I} \left\| Y_i - \sum_{j=1}^{J} T_{ij} Z_j \right\|_2^2 + \lambda_1 \sum_{j=1}^{J} \left\| T_j \right\|_1 + \lambda_2 \sum_{j=1}^{J} \left\| {}^{(-j)} T_j \right\|_2^2$$

• Alternative formulations are possible

### Incorporate TF binding location data

• TF association strength (TFAS) integrates the ChIPseq peak intensities of TF in the vicinity of gene

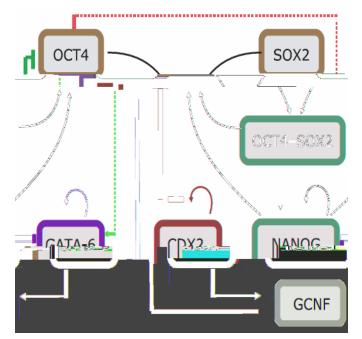
$$a_{ij} = \sum_{k} g_k e^{-d_k/d_0}$$

- Define the TFAS weighting factor  $c_{ii} = 1/a_{ii}$
- Penalized loss function

$$L(T, \lambda_1, \lambda_2, c) = \sum_{per} \sum_{i=1}^{I} \left\| Y_i - \sum_{j=1}^{J} T_{ij} Z_j \right\|_2^2 + \lambda_1 \sum_{j=1}^{J} \left\| c_j \cdot T_j \right\|_1 + \lambda_2 \sum_{j=1}^{J} \left\| c_j \cdot (-j) T_j \right\|_2^2$$

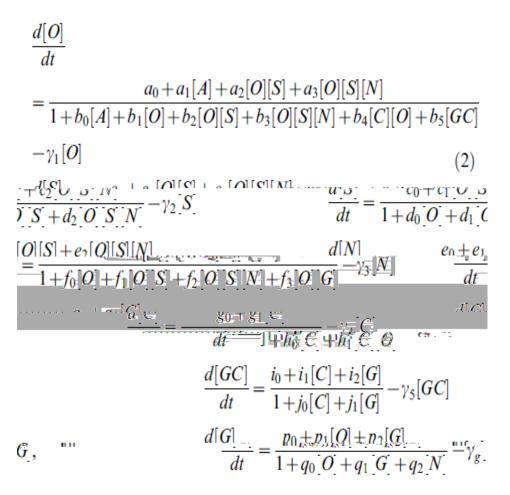
#### Simulated data:

Manually constructed by Chickarmane et al., (2008) PloS One.

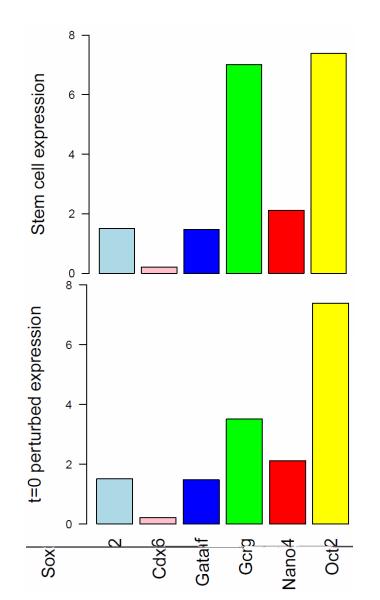


2 stable equilibrium states: stem cell & endoderm

Use symbolic solver to get the two networks

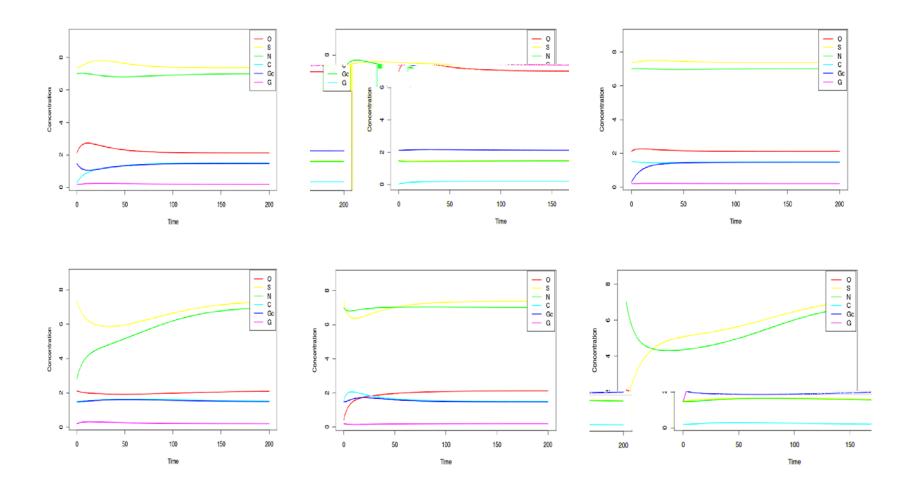


## Perturbation of stem cell state

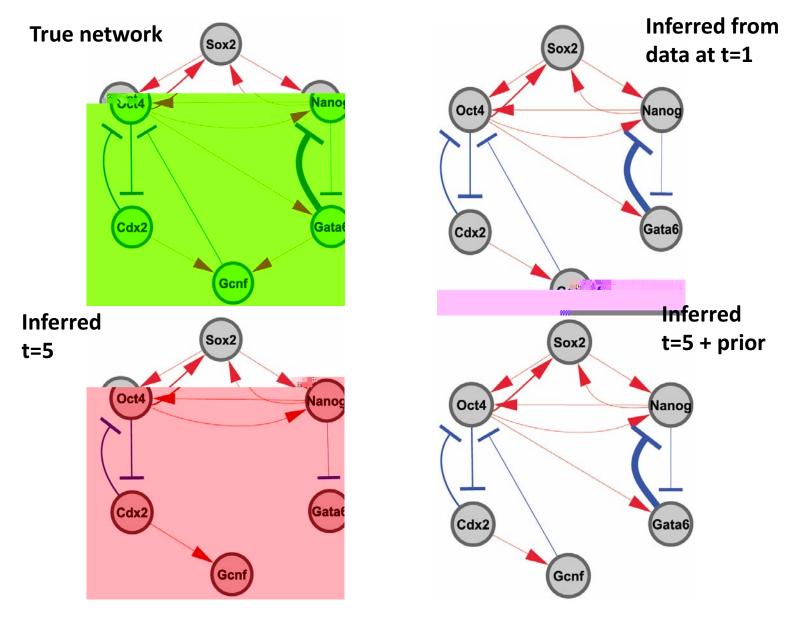


- Knockdown one of the six TFs in each experiment
- The TF expression is reduced by 50% (Nanog) at time =0
- Simulate evolution of expression after perturbation

#### Time evolution after perturbation

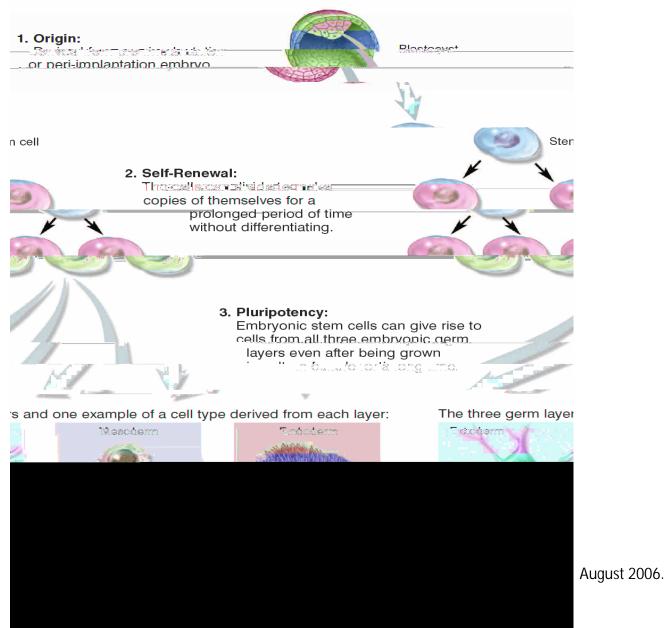


#### Network reconstruction results

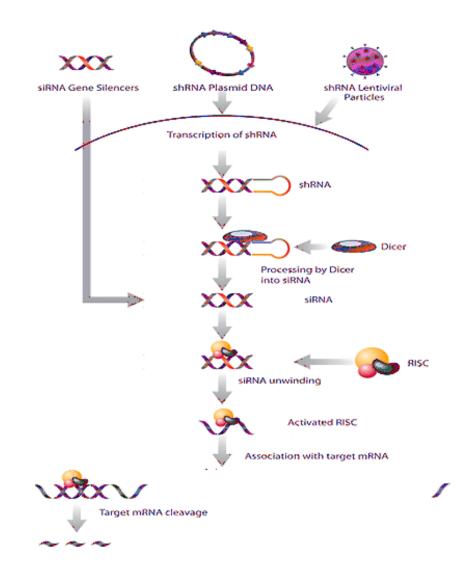


## Real data

#### Embryonic stem cell

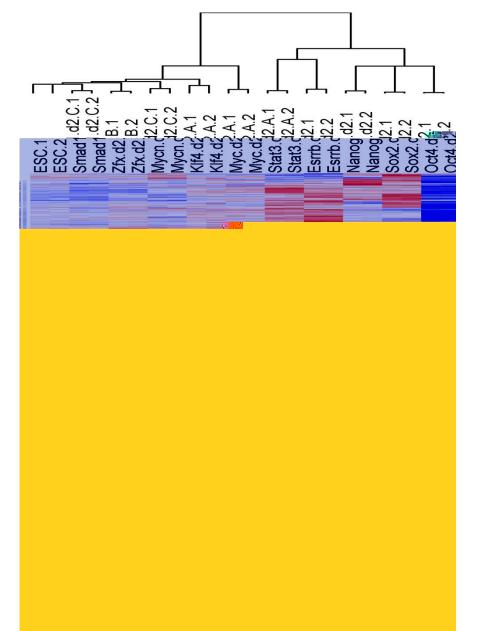


#### Gene knockdown by RNA interference



### Summary of experiments in our lab

#### Sample clustering (after batch effect correction)



### some details

- Quantile normalization
- Batch effect modeling
- No gene filtering
  - All 18138 genes entering into the model fitting
  - Perhaps the first attempt on gene regulatory network inference at the whole genome level in a mammalian cell type

• Network reconstruction with ChIP information (ChIP-seq data from Chen et al 2008)

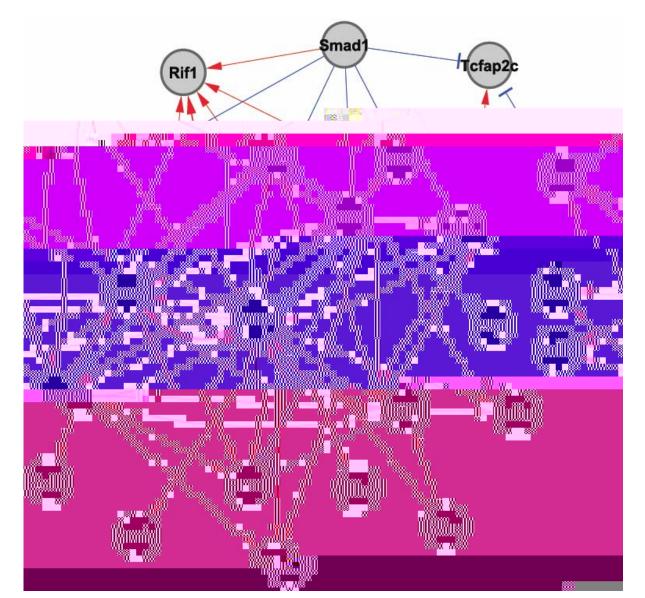
- Cross-validated for choice of  $\boldsymbol{\lambda}$ 

## TF targets identified

• 3764 targets regulated by 10 TFs

| Oct4 | Nanog | Sox2 | Esrrb | Stat3 | Klf4 | Мус | Mycn | Zfx | Smad1 |
|------|-------|------|-------|-------|------|-----|------|-----|-------|
| 2362 | 588   | 461  | 1169  | 895   | 277  | 0   | 0    | 72  | 163   |

## A subnetwork for important TFs

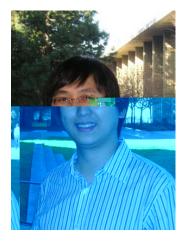


### Acknowledgement

#### Gene perturbation: Xi Chen

#### Methods & data analysis: Zhengqing Ouyang





#### Methods: Bokyung Choi

